Journal Highlight: Metabolomics revealed the toxicity of cationic liposomes in HepG2 cells using UHPLC-Q-TOF/MS and multivariate data analysis

Skip to Navigation

Ezine

  • Published: Dec 4, 2017
  • Author: separationsNOW
  • Channels: Laboratory Informatics
thumbnail image: Journal Highlight: Metabolomics revealed the toxicity of cationic liposomes in HepG2 cells using UHPLC-Q-TOF/MS and multivariate data analysis

The underlying mechanism of cytotoxicity on HepG2 cells of cationic liposomes, used in drug and gene delivery, has been studied by LC/MS supported by multivariate data analysis and statistics.

Metabolomics revealed the toxicity of cationic liposomes in HepG2 cells using UHPLC-Q-TOF/MS and multivariate data analysis

Biomedical Chromatography, 2017, 31, e4036
Jing Yu, Hai Zhang, Ying Li, Sen Sun, Jie Gao, Yanqiang Zhong, Duxin Sun and Guoqing Zhang

Abstract: Cationic liposomes (CLs) are novel nonviral vectors widely used for delivering drugs or genes. However, applications of CLs are largely hampered by their cytotoxicity, partly because the potential mechanism underlying the cytotoxicity of CLs remains unclear. The aim of the present study was to explore the underlying mechanism of cytotoxicity induced by CLs on HepG2 cells. Differential metabolites were identified and quantified using ultra-liquid chromatography quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF/MS). The toxicity of CLs on HepG2 cells was evaluated by multivariate data analysis and statistics. Additionally, CCK-8 assay, heatmap, pathway and co-expression network were carried out to explore the relations between the metabolites and the pathways. The results showed a dose-dependent toxic effect of CLs on HepG2 cells, with an IC50 value of 119.9 μg/mL. Multivariate statistical analysis identified 42 potential metabolites between CLs exposure and control groups. Pathway analysis showed significant changes in pathways involving amino acid metabolism, energy metabolism, lipid metabolism and oxidative stress in the CLs exposure group vs the control group. Metabolites related to the above-mentioned pathways included phenylalanine, methionine, creatine, oxalacetic acid, glutathione, oxidized glutathione, choline phosphate and several unsaturated fatty acids, indicating that cells were disturbed in amino acid metabolism, energy and lipid supply when CLs exposure-induced injury occurred. It is concluded that CLs may induce cytotoxicity by enhancing reactive oxygen species in vitro, affect the normal process of energy metabolism, disturb several vital signaling pathways and finally induce cell death.

  • This paper is free to view for all users registered on separationsNOW.com until the end of February 2018.
    After this time, you can purchase it using Pay-Per-View on Wiley Online Library.

Follow us on Twitter!

Social Links

Share This Links

Bookmark and Share

Microsites

Suppliers Selection
Societies Selection

Banner Ad

Click here to see
all job opportunities

Copyright Information

Interested in spectroscopy? Visit our sister site spectroscopyNOW.com

Copyright © 2017 John Wiley & Sons, Inc. All Rights Reserved