Green one‐pot preparation of α‐ Fe2O3 @carboxyl‐functionalized yeast composite with high adsorption and catalysis properties for removal of methylene blue

Skip to Navigation

EarlyView Article

  • Published: Dec 20, 2017
  • Author: Ying Wang, Wei Zhang, Mian Qin, Maojun Zhao, Yunsong Zhang
  • Journal: Surface and Interface Analysis

Herein, the α‐Fe2O3@carboxyl‐functionalized yeast composite (α‐F@CFYC) was synthesized by direct oxidation of yeast with K2FeO4 and used as a novel adsorbent/heterogeneous Fenton catalyst for removal of methylene blue (MB). The obtained α‐F@CFYC was fully characterized by scanning electron microscopy, EDX, X‐ray diffraction analysis, Fourier‐transform infrared, thermogravimetry, and X‐ray photoelectron spectroscopy, respectively, and the corresponding results showed that α‐Fe2O3 nanoparticles were successfully obtained and deposited on yeast surface, as well as more functional groups were introduced/exposed on yeast surface. Furthermore, various influence parameters (eg, contact time, initial pH, and MB concentration) on the adsorption/catalysis ability of α‐F@CFYC for MB have been investigated in detail under ambient conditions. As a result, owing to the synergetic effect of the loaded α‐Fe2O3 and the introduced/exposed functional groups on yeast surface, the as‐obtained α‐F@CFYC exhibited high adsorption capacities and good catalysis degradation properties for MB.

Social Links

Share This Links

Bookmark and Share

Microsites

Suppliers Selection
Societies Selection

Banner Ad

Click here to see
all job opportunities

Most Viewed

Copyright Information

Interested in spectroscopy? Visit our sister site spectroscopyNOW.com

Copyright © 2018 John Wiley & Sons, Inc. All Rights Reserved