Label‐Free Quantitative Proteomic Analysis of Differentially Expressed Membrane Proteins of Pulmonary Alveolar Macrophages Infected with Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus and Its Attenuated Strain

Skip to Navigation

EarlyView Article

  • Published: Nov 24, 2017
  • Author: Zehui Qu, Fei Gao, Liwei Li, Yujiao Zhang, Yifeng Jiang, Lingxue Yu, Yanjun Zhou, Hao Zheng, Wu Tong, Guoxin Li, Guangzhi Tong
  • Journal: PROTEOMICS


Significant differences exist between the highly pathogenic (HP) porcine reproductive and respiratory syndrome virus (PRRSV) and its attenuated pathogenic (AP) strain in the ability to infect host cells. The mechanisms by which different virulent strains invade host cells remain relatively unknown. In this study, pulmonary alveolar macrophages (PAMs) are infected with HP‐PRRSV (HuN4) and AP‐PRRSV (HuN4‐F112) for 24 h, then harvested and subjected to label‐free quantitative MS. A total of 2849 proteins are identified, including 95 that are differentially expressed. Among them, 26 proteins are located on the membrane. The most differentially expressed proteins are involved in response to stimulus, metabolic process, and immune system process, which mainly have the function of binding and catalytic activity. Cluster of differentiation CD163, vimentin (VIM), and nmII as well as detected proteins are assessed together by string analysis, which elucidated a potentially different infection mechanism. According to the function annotations, PRRSV with different virulence may mainly differ in immunology, inflammation, immune evasion as well as cell apoptosis. This is the first attempt to explore the differential characteristics between HP‐PRRSV and its attenuated PRRSV infected PAMs focusing on membrane proteins which will be of great help to further understand the different infective mechanisms of HP‐PRRSV and AP‐PRRSV.

Social Links

Share This Links

Bookmark and Share


Suppliers Selection
Societies Selection

Banner Ad

Click here to see
all job opportunities

Most Viewed

Copyright Information

Interested in spectroscopy? Visit our sister site

Copyright © 2017 John Wiley & Sons, Inc. All Rights Reserved