Fabrication of an ionic‐liquid‐based polymer monolithic column and its application in the fractionation of proteins from complex biosamples

Skip to Navigation

EarlyView Article

  • Published: Feb 22, 2018
  • Author: Doudou Zhang, Qian Zhang, Ligai Bai, Dandan Han, Haiyan Liu, Hongyuan Yan
  • Journal: Journal of Separation Science


An ionic‐liquid‐based polymer monolithic column was synthesized by free radical polymerization within the confines of a stainless‐steel column (50 mm × 4.6 mm id). In the processes, ionic liquid and stearyl methacrylate were used as dual monomers, ethylene glycol dimethacrylate as the cross‐linking agent, and polyethylene glycol 200 and isopropanol as co‐porogens. Effects of the prepolymerization solution components on the properties of the resulting monoliths were studied in detail. Scanning electron microscopy, nitrogen adsorption–desorption measurements, and mercury intrusion porosimetry were used to investigate the morphology and pore size distribution of the prepared monoliths, which showed that the homemade ionic‐liquid‐based monolith column possessed a relatively uniform macropore structure with a total macropore specific surface area of 44.72 m2/g. Compared to a non‐ionic‐liquid‐based monolith prepared under the same conditions, the ionic‐liquid‐based monolith exhibited excellent selectivity and high performance for separating proteins from complex biosamples, such as egg white, snailase, bovine serum albumin digest solution, human plasma, etc., indicating promising applications in the fractionation and analysis of proteins from the complex biosamples in proteomics research.

Social Links

Share This Links

Bookmark and Share


Suppliers Selection
Societies Selection

Banner Ad

Click here to see
all job opportunities

Most Viewed

Copyright Information

Interested in spectroscopy? Visit our sister site spectroscopyNOW.com

Copyright © 2018 John Wiley & Sons, Inc. All Rights Reserved