Characterization of stress degradation products of amodiaquine dihydrochloride by liquid chromatography with high‐resolution mass spectrometry and prediction of their properties by using ADMET Predictor™

Skip to Navigation

EarlyView Article

  • Published: Oct 30, 2017
  • Author: Vivek Dhiman, Dilip Kumar Singh, Mayurbhai Kathadbhai Ladumor, Saranjit Singh
  • Journal: Journal of Separation Science


The degradation behavior of amodiaquine dihydrochloride, an antimalarial drug, was investigated in solution as well as solid states. The drug was subjected to hydrolytic, photolytic, oxidative, and thermal stress conditions, according to International Conference on Harmonization guideline Q1A(R2). It showed extensive hydrolysis in acidic, alkaline, and neutral solutions both with and without light, while it proved to be stable to thermal and oxidative conditions. In total, six degradation products were formed, which were separated on a C8 column, employing a gradient reversed‐phase high‐performance liquid chromatography method in which acetonitrile and 10 mM ammonium formate (pH 3.0) were used in the mobile phase. To characterize the degradation products, mass fragmentation behavior of the drug was established by direct infusion of solution to quadrupole time‐of‐flight and multiple‐stage mass spectrometry systems. Liquid chromatography with high‐resolution mass spectrometry studies were subsequently carried out on the stressed samples using the same gradient high‐performance liquid chromatography method employed for the separation of the degradation products. Hydrogen/deuterium exchange studies were additionally conducted to determine the number of labile hydrogen atoms. The degradation pathway of the drug was delineated, justified by mechanistic explanation. Lastly, ADMET Predictor™ software was employed to predict relevant physicochemical and toxicity data for the degradation products.

Social Links

Share This Links

Bookmark and Share


Suppliers Selection
Societies Selection

Banner Ad

Click here to see
all job opportunities

Most Viewed

Copyright Information

Interested in spectroscopy? Visit our sister site

Copyright © 2017 John Wiley & Sons, Inc. All Rights Reserved