Development of a high‐throughput method based on thin‐film microextraction using a 96‐well plate system with a cork coating for the extraction of emerging contaminants in river water samples

Skip to Navigation

EarlyView Article

  • Published: Dec 14, 2017
  • Author: Lucas Morés, Adriana Neves Dias, Eduardo Carasek
  • Journal: Journal of Separation Science

Abstract

In this study, a new method was developed in which a biosorbent material is used as the extractor phase in conjunction with a recently described sample preparation technique called thin‐film microextraction and a 96‐well plate system. The method was applied for the determination of emerging contaminants, such as 3‐(4‐methylbenzylidene) camphor, ethylparaben, triclocarban, and bisphenol A in water samples. The separation and detection of the analytes were performed by high‐performance liquid chromatography with diode array detection. These contaminants are considered hazardous to human health and other living beings. Thus, the development of an analytical method to determine these compounds is of great interest. The extraction parameters were evaluated using multivariate and univariate optimization techniques. The optimum conditions for the method were 3 h of extraction time, 20 min of desorption with 300 μL of acetonitrile and methanol (50:50, v/v), and the addition of 5% w/v sodium chloride to the sample. The analytical figures of merit showed good results with linear correlation coefficients higher than 0.99, relative recoveries of 72–125%, interday precision (= 3) of 4–18%, and intraday precision (= 9) of 1–21%. The limit of detection was 0.3–5.5 μg/L, and the limit of quantification was 0.8–15 μg/L.

Social Links

Share This Links

Bookmark and Share

Microsites

Suppliers Selection
Societies Selection

Banner Ad

Click here to see
all job opportunities

Most Viewed

Copyright Information

Interested in spectroscopy? Visit our sister site spectroscopyNOW.com

Copyright © 2018 John Wiley & Sons, Inc. All Rights Reserved