Magnetic porous carbon derived from Co‐doped metal–organic frameworks for the magnetic solid‐phase extraction of endocrine disrupting chemicals

Skip to Navigation

EarlyView Article

  • Published: Aug 31, 2017
  • Author: Lin Hao, Jiayi Wei, Ruixue Zheng, Chun Wang, Qiuhua Wu, Zhi Wang
  • Journal: Journal of Separation Science

Metal–organic frameworks‐5 (MOF‐5) was explored as a template to prepare porous carbon due to its high surface area, large pore volume, and permanent nanoscale porosity. Magnetic porous carbon, Co@MOF‐5‐C, was fabricated by the one‐step direct carbonization of Co‐doped MOF‐5. After carbonization, the magnetic cobalt nanoparticles are well dispersed in the porous carbon matrix, and Co@MOF‐5‐C displays strong magnetism (with the saturation magnetization intensity of 70.17emu/g), high‐specific surface area, and large pore volume. To evaluate its extraction performance, the Co@MOF‐5‐C was applied as an adsorbent for the magnetic solid‐phase extraction of endocrine disrupting chemicals, followed by their analysis with high‐performance liquid chromatography. The developed method exhibits a good linear response in the range of 0.5–100 ng/mL for pond water and 1.0–100 ng/mL for juice samples. The limits of detection (S/N = 3) for the analytes were in the range of 0.1–0.2 ng/mL.

Social Links

Share This Links

Bookmark and Share


Suppliers Selection
Societies Selection

Banner Ad

Click here to see
all job opportunities

Most Viewed

Copyright Information

Interested in spectroscopy? Visit our sister site

Copyright © 2017 John Wiley & Sons, Inc. All Rights Reserved