Optimizing silver‐capped silicon nanopillars to simultaneously realize macroscopic, practical‐level SERS signal reproducibility and high enhancement at low costs

Skip to Navigation

EarlyView Article

  • Published: Sep 28, 2017
  • Author: Kaiyu Wu, Tomas Rindzevicius, Michael S. Schmidt, Anil H. Thilsted, Anja Boisen
  • Journal: Journal of Raman Spectroscopy

Abstract

The ideal surface‐enhanced Raman spectroscopy (SERS) substrate should fulfil the following: (a) predictable SERS enhancement, (b) macroscale SERS signal uniformity, and (c) suitability for mass production at low costs. Macroscale SERS uniformity and reproducibility at practical levels are big obstacles, which have been preventing most SERS substrates from reliable sensing applications. We have previously shown that SERS‐active nanopillar structures, fabricated by lithography‐free processes, exhibit high average SERS enhancements and are mass producible. Here, we report an optimized process and show that the improved structures exhibit unrivalled macroscale SERS uniformities (RSD: ∼2.5% in millimeter scale, ∼7% in wafer scale) and reproducibility (RSD: ∼1.5% across 3 wafers), while at the same time exhibiting a very large average SERS enhancement factor of >108. The obtained SERS uniformity (~2.5% RSD in millimeter scale) is the best to date measured on large‐area solid SERS substrates. Fast and reproducible SERS analysis of trans‐1,2‐bis (4‐pyridyl) ethylene down to 4 × 10−13 mol is demonstrated using the optimized structures. We emphasize that achieving simultaneously macroscopic, practical‐level SERS signal reproducibility and high enhancement via a lithography‐free process is a notable advance towards industrialization of substrate‐based SERS sensors.

Social Links

Share This Links

Bookmark and Share

Microsites

Suppliers Selection
Societies Selection

Banner Ad

Click here to see
all job opportunities

Most Viewed

Copyright Information

Interested in spectroscopy? Visit our sister site spectroscopyNOW.com

Copyright © 2017 John Wiley & Sons, Inc. All Rights Reserved