Dielectrophoretic choking phenomenon of a deformable particle in a converging‐diverging microchannel

Skip to Navigation

EarlyView Article

  • Published: Dec 27, 2017
  • Author: Teng Zhou, Jian Ge, Liuyong Shi, Junqing Fan, Zhenyu Liu, Sang Woo Joo
  • Journal: ELECTROPHORESIS

Abstract

The translational motion of small particles in an electrokinetic fluid flow through a constriction can be enhanced by an increase of the applied electric potential. Beyond a critical potential, however, the negative dielectrophoresis (DEP) can overpower other forces to prevent particles that are even smaller than the constriction from passing through the constriction. This DEP choking phenomenon was studied previously for rigid particles. Here, the DEP choking phenomenon is revisited for deformable particles, which are ubiquitous in many biomedical applications. Particle deformability is measured by the particle shear modulus, and the choking conditions are reported through a parametric study that includes the channel geometry, external electric potential, and particle zeta potential. The study was carried out using a numerical model based on an arbitrary Lagrangian‐Eulerican (ALE) finite‐element method.

Social Links

Share This Links

Bookmark and Share

Microsites

Suppliers Selection
Societies Selection

Banner Ad

Click here to see
all job opportunities

Most Viewed

Copyright Information

Interested in spectroscopy? Visit our sister site spectroscopyNOW.com

Copyright © 2018 John Wiley & Sons, Inc. All Rights Reserved